Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Int J Pharm Pharm Sci ; 2020 Jul; 12(7): 59-65
Article | IMSEAR | ID: sea-206126

ABSTRACT

Objective: The primary aim of the present examination was to create carvedilol phosphate floating tablets using factorial designs and for retention in the upper portion of the gastrointestinal (GI) tract to sustain the dissolution where the solubility of carvedilol phosphate is more in an acidic medium. Methods: The floating tablets of carvedilol phosphate were ready to employ different concentrations and a combination of these polymers of Na-alginate, Carbopol 934P, and sodium carboxymethyl cellulose (NaCMC) with lubricants magnesium stearate by direct compression technique. In the present experiment, involved sodium bicarbonate and citric acid as a gas-producing agent. Fifteen formulations structured and judged for pre-compression components like the angle of repose, bulk and tapped density, Hausner’s ratio, compressibility index, and post-compression factors are weight uniformity, hardness, drug content, friability, in vitro buoyancy, dissolution studies, and Fourier transforms infrared spectroscopy (FTIR). Results: The drug released 90.02% in 12 h by combining NaCMC (7.5 mg) and Na-alginate (7.5 mg) in the formulation F14 towards the achievement of sustained release. Batch F14 selected as optimized, as provided desired zero-order release profile as well as floating lag time 20 s and total floating time>12 h, and the mechanism of drug release observed (n = 1.098, super case-II transport). Conclusion: From the results fulfilled that all the preparation found to be within the pharmacopeia limits and was the best dosage form to treat moderate heart failure and hypertension. The in vitro dissolution profiles of all formulations placed into various kinetic models, the statistical parameters like slope, regression coefficient and intercept determined. The gastro-retentive dosage form to maintain the sustain drug delivery, which would improve the maximum therapeutic efficacy and patient compliance.

2.
Article in English | IMSEAR | ID: sea-157305

ABSTRACT

In the present study efforts have been made to prepare sustained release matrix tablets of Lornoxicam. Matrix tablets were prepared by direct compression method by using Hydroxypropyl methyl cellulose K15 (HPMC- K15), Ethyl cellulose (EC) and Sodium carboxy methyl cellulose (Na-CMC) as polymers in different concentrations. A 3-factor 3- level Box-Behnken statistical design was used as an optimization tool having total of 17 experimental runs with 5 central points. All three polymers were selected as independent variables while %age drug release at various time intervals and hardness were used as dependant variables. In vivo studies were conducted on human plasma using Tenoxicam as internal standered. All the detections were made on SYKNM HPLC. Foriour Transform Infrared Spectroscopy (FTIR) and Differential Scanning Calorimetery (DSC) studies were conducted and no chemical interaction was found between drug and polymers. The drug release mechanism was mainly governed by non-fickian (anomalous) diffusion and zero-order (case II) transport diffusion. Regression analysis was performed on dissolution data obtained with the selected response variables and polynomial models were constructed. Polynomial models were further validated using one way ANOVA and results indicated that all the polymers used have significant effect on selected response (p>0.05). Contour plots and three dimensional response surface curves were drawn. In- vivo studies were conducted on two tablet formulation indicating slow and sustained release of the drug from matrix. From Behnken design it is possible to successfully formulate and optimize Lornoxicam sustained release matrix tablets with three polymers (HPMC- K15, EC and Na-CMC) in combination.

3.
Article in English | IMSEAR | ID: sea-158124

ABSTRACT

Mouth dissolving drug delivery systems has number of advantage viz., faster onset of action, elegance, ease of administration, ease of manufacturing, ease of storage and transport. A novel attempt has been made to develop mouth dissolving tablets of Ondansetron hydrochloride by including clove oil as flavor and local anesthetic on taste buds. The tablets were prepared by direct compression technique. The formulated tablets were evaluated for Pre formulation and post formulation parameters and they were found to be saatisfactory. Direct compression method was employed for making mouth dissolving tablets. The formulated mouth dissolving tablets possessed good drug releasing property, good mouth feel and improved drug availability with better patient compliance.

SELECTION OF CITATIONS
SEARCH DETAIL